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Abstract

The application of a non-linear lumped-parameter thermal balance to the experimental temperature/time profile is
shown for the electro-oxidation of 2-methylnaphthalene.

List of symbols

A Heat loss area (cm2); Ae evaporation area
Ca Thermal capacity (J K)l)
F Faraday’s constant (96488 C mol)1)
I Current (A); Im Mean current
(I2R)m Mean value of Joule heat (W)
LPBE Acronym for lumped parameter batch electro-

lyzer
m Mean rate of solvent evaporation (g min)1 cm)2)
Qe Heat loss rate due to evaporation (W)
R Electrolyte resistance (ohm)
r2 Coefficient of determination for a statistical

regression ())
SSE Acronym for sum of the squared errors
T Anolyte temperature (�C or K); TA Ambient

temperature; T0 Initial anolyte temperature;
t Time (min)
U Overall heat loss coefficient (W cm)2 �C)1)
DHR Heat of electrode reaction (J mol)1)
DHv Heat of solvent evaporation (J g)1)

1. Introduction

The electrochemical oxidation of naphthalene deriva-
tives requires temperatures in the 40–60 �C range, hence
a relatively large Joule heat input is necessary, which
also has to compensate for partial evaporation of the
organic solvent (acetone), and heat loss through the cell
boundaries to the ambient [1, 2]. It is shown in this
paper that, in spite of inherent complexities in estab-
lishing a rigorous heat balance, the increase in cell
temperature with time past an initial period of electrol-
ysis can be approximated reasonably well by a lumped
parameter heat transport model, for the estimation of
mean solvent evaporation rates. Such information is

potentially useful for the design of a medium- and large-
scale electro-oxidation process, in contrast to small-scale
cells [3].

2. Experimental

Experiments were carried out in a double-compartment
cylindrical cell utilized for preliminary investigations by
Łobuzińska, leading to an advanced research project [4].
Figure 1 shows a sketch of the cell, in which the lower
portion of the 2.3 cm dia cathode compartment and the
4.7 cm dia, 9 cm tall anode compartment were joined (at
about middle-height) by a 3.5 cm long, 1.6 cm dia
cylindrical conduit containing a 2 mm wide porous glass
diaphragm at its centre. The electrolytes were made up of
a 1:1 (v/v) acetone-aqueous mixture of 0.1 M sodium
sulfate, 0.02 M cobalt(II) sulfate, and 0.01 M organics,
e.g. 2-methylnaphthalene, 2-ethylnaphthalene and
1-ethylnaphthalene, in an active electrolyte volume of
50 cm3. A 0.8 mm dia spiral platinum wire cathode
served for proton discharge, and a 1.8 cm dia cylindrical
platinum grid anode, with an active surface area of about
27 cm2, was employed for the oxidation of the naphtha-
lene derivatives accompanied by oxygen evolution.
The temperature of the magnetically stirred electrolyte

was brought to 26 �C prior to electrolysis. A gradual
increase in current was effected by the ZT-980-4 Unitra-
Unima (Warsaw) voltage-current stabilizer/adapter, em-
ployed for electrolysis. The anolyte temperature was
monitored by a thermometer until no further change with
time was observed. The ambient temperature remained a
constant 20 �C. Although the top of the anode compart-
ment was covered with aluminum foil to contain acetone
evaporation, the anolyte level had to be maintained by
adding fresh acetone periodically. The anolyte pH gradu-
ally decreased from its initial value of 7 during electrolysis.
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3. Analysis of thermal behaviour

3.1. Application of a lumped parameter batch electrolyzer
(LPBE) model

Without the use of this specific acronym, the develop-
ment of the thermal LPBE model has been amply
described in the literature [e.g. 5–9]. Assuming temper-
ature-independent physical parameters within the exper-
imental range, the thermal balance for the anolyte can
be written as

Ca
dT
dt

¼ I2R� IDHR

zF
�UAðT � TAÞ � Qe ð1Þ

where the last term assigns a constant thermal loss due
to acetone evaporation, by means of a mean evapora-
tion rate as an approximation to the experimental
partial depletion/replenishment conditions. Since cur-
rent varies throughout an experiment, Equation l is
inherently nonlinear, unless the Joule heat term is
represented by an averaged value (I2R)m , to create a
linear approximation. Equation 1 implies that the
secondary Soret and Dufour effect [10, 11], contact
resistance effects, etc. are negligible with respect to other
heat transport modes.
A realistic numerical value of the overall specific

thermal loss rate (UA) can be obtained if the initially
high temperature is allowed to drop over a sufficiently
long time without electrolysis. Equation l is simplified to

Ca
dT
dt

ffi �UAðT � TAÞ ð2Þ

and the slope of its analytical solution

lnðT � TAÞ ¼ lnðT0 � TAÞ �
UA

Ca
t ð3Þ

yields U. In this manner, cumbersome and presumably
unreliable estimations of the convective and radiative
transport kinetics based on standard heat transport data
compilations are avoided [12].

3.2. Numerical illustration: the electro-oxidation of
2-methylnaphthalene

Table 1 portrays typical experimental observations
(Columns 1–3), and predicted temperatures (Column 4
and 5). The mean acetone evaporation rate was estab-
lished via parametric fitting of m with physical param-
eters Ca¼211.5 J �C)1; DHR¼285.953 kJ mol)1; DHv¼
501.051 J g)1 acetone adopted from the literature [13].

Fig. 1. Schematic of the experimental cell. (a) Pt wire cathode mounted

in glass; (b) cylindrical Pt grid anode; (c) porous glass diaphragm;

(d) diaphragm support; (e) magnetic stirrer; (f) thermometer.

Table 1. Experimental and model-predicted evolution of anolyte temperature during the electro-oxidation of 2-methylnaphthalene

t

/min

I

/mA

T

/�C (experimental)

T

/�C; Equation l; m = 0.0315

T

/�C; Equation 5 m = 0.0191

0 45.0 26.0 26.0 26.0

15 88.0 28.5 39.0 39.0

30 119.8 35.5 41.3 43.1

45 122.8 42.0 42.1 44.4

60 124.0 44.0 42.7 44.8

75 123.5 44.0 43.2 44.9

90 123.7 43.0 43.8 45.0

105 129.2 44.0 44.3 45.0

120 130.5 45.0 44.9 45.0

135 132.0 45.0 44.9 45.0

150 132.1 45.0 44.9 45.0

R = 4976.413 ) 13.5721T (ohm); [T] = K; r2 = 0.98

I = 0.1202 + 1.052 10)4(t ) 30) (A); [t] = min; r2 = 0.91

Qe = Aem DHv = 144.88m (W)

Equation l: dT/dt = 0.2837I2R ) 0.42039I ) 0.0773(T ) 293) ) 41.1024m (K min)1); [m] = g cm)2/ min)1; solution via [14]; Im = 0.1156

(A); (I2R)m = 9.7588 (W)

Equation 5: T = (328.186 ) 531.736m)[1 ) exp()0.077294t)] + 299 exp()0.077294t) (K min)1); [t] = min; [m] = g cm)2 min)1.
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The numerical value of UA¼0.27246 W �C)1 was deter-
mined from Equation 3 with r2 � 1, and 95% confi-
dence interval (0.2690; 0.2758), based on experimental
T/t data without passage of current.
Although poorly predicted at small times, the exper-

imentally observed temperature values are closely fit by
the LPBE model past about 30 min of electrolysis, as
shown by the low residuals (SSE ¼ 4.065 (�C)2 excluding
the t¼15 and t¼30 min observations). This short time-
related discrepancy, found consistently in all experi-
ments, is due to a deliberate exclusion of current values
for t O 30 from the I(t) regression, in order to achieve a
high r2 value. Regression analysis based on the full set of
I/t data (a) yield unacceptably low linear and quadratic
correlation parameter values, and (b) predict tempera-
tures for t > 30 min which are consistently lower than
experimental observations (even in the case of a cubic-
polynomial regression with r2 � 0.93). A comprehensive
nonlinear analysis does not seem warranted in view of
the low degree of correlation (r2 � 0.45) for a standard
power regression.
Column 5 in Table 1 demonstrates that the inviting

simplification of Equation 1 to obtain a linear balance

Ca
dT
dt

ffi ðI2RÞm � ImDHR

zF
�UAðT � TAÞ � Qe ð4Þ

solving to

T ¼T0 exp
�
�UA

Ca
t
�

þ ðI2RÞm � ImDHR=zF þUATA � Qe

UA

�
�
1� exp

�
�UA

Ca

�
t
�

ð5Þ

offers a quick analytical approximation to large-time
temperatures, (SSE¼12.21 (�C)2), excluding the t ¼ 15,
30 and 45 min observations), but it results in a lower
estimate of the mean acetone evaporation rate.
In conclusion, the LPBE model is a useful tool for

predicting temperature evolution in well-stirred batch

electrolyzers, and for estimating mean solvent evapora-
tion rates, if employed with adequate caution.
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